

Statewide Shoulders Study Task MPD 059-14

Final Report

August 2015

Prepared by JACOBS

i.

Table of Contents

1.	Study Overview	1
	Purpose and Need	1
	Technical Advisory Committee	2
2.	Literature Review and Design Standards	3
	Nationally Recommended Shoulder Guidelines	
	ADOT Shoulder Design Standards	
	Highway Safety Manual (HSM)	
	Bicycle and Pedestrian Shoulder Guidelines	
3.	Existing Conditions Assessment	6
•	Data Collection	
	Existing Shoulder Widths	
	Existing Traffic Conditions	
	Pedestrian and Bicycle Routes	
	Oversized Load Corridors	
	Crash Analysis	
	Stakeholder Outreach – Phase I	
4.	Identification and Prioritization Methodology	
	Methodology to Identify Shoulder Improvements on Two-Lane Highways	
	Methodology to Identify Shoulder Improvements on Multilane Highways	
	Stakeholder Outreach - Phase II	
5.	Summary Results – Shoulder Improvements on Two-Lane Highways	
	Planning Level Cost Estimates	
	Flagstaff District	41
	Globe District	48
	Holbrook District	56
	Kingman District	62
	Phoenix Maintenance District	65
	Prescott District	67
	Safford District	72
	Tucson District	76
	Yuma District	80
	Statewide Priority Shoulder Improvement Locations	83
6.	Summary Results – Shoulder Improvements on Multilane Highways	199

///ADOT

List of Tables

2.1.	AASHTO Shoulder Width Design Guidelines	3
2.2.	ADOT Shoulder Width Design Guidelines	3
2.3.	Crash Modification Factor for Shoulder Width on Rural Two-Lane Roadway Segments	4
2.4.	Potential Crash Effects of Paved Right Shoulder Width on Divided Roadways	5
3.1.	Data Items and Sources	6
3.2.	Manual Verification of Shoulder Width GIS Data Accuracy	7
3.3.	EPDO Conversion Factors	27
3.4.	ADOT District Engineer Recommended Shoulder Improvement Locations	32
4.1.	Prioritization Criteria for Shoulder Improvements on Two-Lane Highways	34
4.2.	Prioritization Criteria for Shoulder Improvements on Multilane Highways	36
5.1.	Two-Lane Highways - Candidate Shoulder Improvement Locations in Flagstaff District	41
5.2.	Two-Lane Highways - Ranking of Priority Candidate Locations in Flagstaff District	44
5.3.	Two-Lane Highways - Candidate Shoulder Improvement Locations in Globe District	48
5.4.	Two-Lane Highways - Ranking of Priority Candidate Locations in Globe District	52
5.5.	Two-Lane Highways - Candidate Shoulder Improvement Locations in Holbrook District	56
5.6.	Two-Lane Highways - Ranking of Priority Candidate Locations in Holbrook District	59
5.7.	Two-Lane Highways - Candidate Shoulder Improvement Locations in Kingman District	62
5.8.	Two-Lane Highways - Ranking of Priority Candidate Location in Kingman District	63
5.9.	Two-Lane Highways - Candidate Shoulder Improvement Locations in Phoenix Maintenance District	65
5.10.	Two-Lane Highways - Ranking of Priority Candidate Locations in Phoenix Maintenance District	65
5.11.	Two-Lane Highways - Candidate Shoulder Improvement Locations in Prescott District	67
5.12.	Two-Lane Highways - Ranking of Priority Candidate Locations in Prescott District	69
5.13.	Two-Lane Highways - Candidate Shoulder Improvement Locations in Safford District	72
5.14.	Two-Lane Highways - Ranking of Priority Candidate Locations in Safford District	74
5.15.	Two-Lane Highways - Candidate Shoulder Improvement Locations in Tucson District	76

ii.

List of Tables (Continued)

///ADOT

5.16	. Two-Lane Highways - Ranking of Priority Candidate Locations in Tucson District	78
5.17.	. Two-Lane Highways - Candidate Shoulder Improvement Locations in Yuma District	80
5.18	. Two-Lane Highways - Ranking of Priority Candidate Locations in Yuma District	81
6.1.	Multilane Highways - Statewide Ranking of Priority Candidate Locations	199

List of Figures

3.1.	Existing Shoulder Conditions - Flagstaff District	8
3.2.	Existing Shoulder Conditions - Flagstaff District (Divided Highways)	9
3.3.	Existing Shoulder Conditions - Globe District	.10
3.4.	Existing Shoulder Conditions - Holbrook District	11
3.5.	Existing Shoulder Conditions - Holbrook District (Divided Highways)	12
3.6.	Existing Shoulder Conditions - Kingman District	.13
3.7.	Existing Shoulder Conditions - Kingman District (Divided Highways)	.14
3.8.	Existing Shoulder Conditions - Phoenix Maintenance District	.15
3.9.	Existing Shoulder Conditions - Prescott District	16
3.10.	Existing Shoulder Conditions - Prescott District (Divided Highways)	17
3.11.	Existing Shoulder Conditions - Safford District	18
3.12.	Existing Shoulder Conditions - Safford District (Divided Highways)	19
3.13.	Existing Shoulder Conditions - Tucson District	.20
3.14.	Existing Shoulder Conditions - Tucson District (Divided Highways)	.21
3.15.	Existing Shoulder Conditions - Yuma District	22
3.16.	Existing Shoulder Conditions - Yuma District (Divided Highways)	23
3.17.	Existing Traffic Conditions	24
3.18.	Pedestrian and Bicycle Corridors	25
3.19.	Oversized Load Corridors	26
3.20.	Crash Severity (Crash Rate) – Two-Lane Highways	28
3.21.	Crash Severity (Crash Rate) – Multilane Highways	29
3.22.	Crash Severity (EPDO) – Two-Lane Highways	30
3.23.	Crash Severity (EPDO) – Multilane Highways	31

ADOT Statewide Shoulders Study Task Assignment MPD 059-14

List of Figures (Continued)

///ADOT

4.1.	Identification Process for Shoulder Improvements on Two-Lane Highways	35
4.2.	Identification Process for Shoulder Improvements on Multilane Highways	37
5.1.	Two-Lane Highways - Priority Candidate Locations in Flagstaff District	47
5.2.	Two-Lane Highways - Priority Candidate Locations in Globe District	55
5.3.	Two-Lane Highways - Priority Candidate Locations in Holbrook District	61
5.4.	Two-Lane Highways - Priority Candidate Locations in Kingman District	64
5.5.	Two-Lane Highways - Priority Candidate Locations in Phoenix Maintenance District	66
5.6.	Two-Lane Highways - Priority Candidate Locations in Prescott District	71
5.7.	Two-Lane Highways - Priority Candidate Locations in Safford District	75
5.8.	Two-Lane Highways - Priority Candidate Locations in Tucson District	79
5.9.	Two-Lane Highways - Priority Candidate Locations in Yuma District	82
5.10.	Two-Lane Highways - Statewide Priority Candidate Locations	83
6.1.	Multilane Highways - Statewide Priority Candidate Locations	.200

1. Study Overview

// ADOT

Located adjacent to a roadway's travel lanes, highway shoulders are essential components on any road section. Highway shoulders serve several purposes:

- Creates a safe zone for vehicles to safely exit travel lanes during emergency situations
- Allows motorists an area to maneuver if they exit the travel lane
- Increases sight distance of horizontal curves
- Provides bicyclists with a safe area adjacent to vehicle travel lanes
- Increases driver's sense of safety
- · Provides structural support to highway pavement
- Protects the highway surface from damage caused by water flow
- Creates a storage area during snow removal

Shoulder improvements can lead to a plethora of safety and operational improvements, such as reduction in crashes, safe pedestrian and bicycle facilities, mitigation of drainage issues, and increased roadway capacity. Potential safety hazards can occur when a vehicle leaves the travel way and there is a significant material and elevation difference between highway pavement and shoulder surfaces. This elevation difference can affect vehicle stability, reduce a driver's ability to handle the vehicle, and often cause head-on, sideswipe, rollover, and fixed object crashes. Shoulder paving is recognized as a positive countermeasure to reduce a shoulder drop-off hazard that will accommodate stopped vehicles to avoid encroachment from the travel way, facilitate maintenance work, provide access for emergency vehicles, and protect pavement structural integrity. A paved shoulder can also assist in preventing damage to the road structure caused by water infiltration and can provide motorists with a warning system when veering off the roadway (i.e., rumble strips).

Purpose and Need

With the ultimate purpose of enhancing safety and improving mobility, the *Statewide Shoulders Study* was initiated to develop a prioritized list of candidate locations for shoulder improvements. The need for this study stems directly from ADOT's desire to increase safety and mobility along the Arizona State Highway System. The project purpose is demonstrated with the following statement of need:

- **Create Methodology.** As the first statewide, shoulder improvement prioritization project conducted in Arizona, a methodology needs to be developed that utilizes available data to accurately identify deficiencies. A statewide and district-level prioritization is needed in order to appropriate limited funds for priority projects.
- **Develop List of Shoulder Improvement Locations.** Currently, there is no statewide or ADOT Engineering District-wide listing of prioritized locations for shoulder improvement projects. This document will serve as

guidance for determining priority roadway segments within each ADOT District and throughout the State that require funding.

 Develop Feasible, Cost Effective Implementation Plan. High priority projects need to be evaluated for feasibility and cost-effectiveness. Due to limited funding, innovative and cost effective alternatives beyond traditional pavement applications need to be explored.

Technical Advisory Committee

// ADOT

This study was guided by a Technical Advisory Committee (TAC). The role of the TAC was to provide technical guidance, support, advice, suggestions, recommendations, and to perform document reviews throughout the study process. TAC members included representatives from:

- ADOT Multimodal Planning Division
- ADOT Phoenix Engineering District
- ADOT Tucson Engineering District
- ADOT Prescott Engineering District
- ADOT Yuma Engineering District
- ADOT Flagstaff Engineering District
- ADOT Holbrook Engineering District
- ADOT Kingman Engineering District

- ADOT Globe Engineering District
- ADOT Safford Engineering District
- ADOT Roadway Engineering Group
- ADOT Maintenance Group
- ADOT Bridge Group
- ADOT Right of Way
- ADOT Traffic Safety Section
- Federal Highway Administration (FHWA)

2. Literature Review and Design Standards

Reviewing current practices and methodologies utilized by state Department of Transportation (DOT) agencies and relevant technical literature often provides insight into best practices that ADOT can utilize to enhance or streamline the identification and prioritization of shoulder improvement projects.

Nationally Recommended Shoulder Guidelines

The American Association of State Highway and Transportation Officials (AASHTO) *A Policy on Geometric Design of Highways and Streets* provides shoulder width standards on the national level. Table 2.1 summarizes minimum shoulder width per AASHTO guidelines. The standards displayed in the table represent design values for usable and paved shoulders – usable shoulder width is the actual width utilized by motorists and is measured from the edge of the travel lane. For interstates with six or more lanes AASHTO recommends that the right shoulder width not be less than 10 feet. Additionally, AASHTO recommends a paved 12 foot right shoulder on interstates with six or more lanes and truck traffic exceeds 250 DDHV (directional design hour volume).

	Rural		Urban		
Type of Roadway	US (Feet)	Metric (Meters)	US (Feet)	Metric (Meters)	
Freeway	4 - 12	1.2 - 3.6	4 - 12	1.2 - 3.6	
Ramps (1-Lane)	1 - 10	0.3 - 3.0	1 - 10	0.3 - 3.0	
Arterial	2 - 8	0.6 - 2.4	2 - 8	0.6 - 2.4	
Collector	2 - 8	0.6 - 2.4	2 - 8	0.6 - 2.4	
Local	2 - 8	0.6 - 2.4	-	-	

Table 2.1: AASHTO Shoulder Width Design Guidelines

Source: AASHTO A Policy on Geometric Design of Highways and Streets

ADOT Shoulder Design Standards

Table 2.2 summarizes the minimum shoulder width per ADOT's Roadway Design Guidelines.

 Table 2.2: ADOT Shoulder Width Design Guidelines

Highway Type	Paved Should Left	er Width (Feet) Right		
Controlled Access Highways				
4 lanes	4	10		
6 or more lanes	10	10		
Auxiliary lanes	-	10		
1-lane freeway to freeway directional ramp	6	10		
2-lane freeway to freeway directional ramp	4	8		
1-lane and 2-lane ramps	2	8		
Ramp termini at crossroad	2	2		

·/ A	DOT
/	

Table 2.2: ADOT Shoulder Width Design Guidelines (Continued)

	Paved Shoulder Width (Feet)			
Highway Type	Left	Right		
Non-Controlled Access Highways				
Rural multi-lane divided	4	10		
Rural 2-Lane: DHV > 200 vph	-	8		
Rural 2-Lane: DHV < 200 vph	-	6		
Urban multi-lane divided	2	4		
Urban multi-lane undivided: 5 or more lanes	-	4		
Urban multi-lane undivided: 4 lanes	-	4		
Source: ADOT Boadway Design Guidelines				

Source: ADOT Roadway Design Guidelines

Highway Safety Manual (HSM)

A crash modification factor (CMF) is a multiplicative factor used to compute the expected number of crashes after implementing a given countermeasure at a specific site. The HSM provides CMFs for the widening of highway shoulder on rural two-lane roadway segments (See Table 2.3). According to the HSM, for roadways with an AADT of 400 or less, shoulder width has a small crash effect. On roadway segments with an AADT of greater than 2000, shoulder widths less than 6 FT are predicted to experience significantly more crashes than roadway segments with 8 FT shoulders.

Shoulder	Average Annual Daily Traffic (vehicle/day)			
Width	<400	400 - 2000	>2000	
0 FT	1.10	1.10 + .00025 (AADT - 400)	1.50	
2 FT	1.07	1.07 + .000143 (AADT - 400)	1.30	
4 FT	1.02	1.02 + .00008125 (AADT - 400)	1.15	
6 FT	1.00	1.00	1.00	
8 FT of More	0.98	0.98 + .00006875 (AADT - 400)	0.87	

Table 2.3: Crash Modification Factor for Shoulder Width on Rural Two-Lane Roadway Segments

Source: Highway Safety Manual

Note: The collision types related to shoulder width to which this CMF applies include single-vehicle run off the road and multiple-vehicle head-on, opposite direction sideswipe, and same-direction sideswipe crashes.

Standard error of the CMF is unknown.

To determine the CMF for changing paved shoulder width and/or AADT, divide the "new" condition CMF by the "existing" condition CMF.

On divided roadway segments, the HSM provides CMFs if base condition shoulders (8 FT) are reduced. Table 4.2 provides a table of the potential crash effects if right shoulder widths are reduced on divided roadway segments. As shown in the table, on divided segments a roadway segment with a 0 FT shoulder is predicted to experience 18% more crashes than a roadway segment with an 8 FT shoulder.

Setting (Road Type)	Traffic Volume	Crash Type (Severity)	CMF	Std. Error
			1.04	
Rural (Multilane Highway)	Upper esticad	All Types	1.09	NI / A
	Unspecified	(Unspecified)	1.13	N/A
riigiiway			1.18	
	Type) Rural	Type) Rural (Multilane Unspecified	Type)(Severity)Rural (MultilaneUnspecifiedAll Types (Unspecified)	Type)(Severity)Rural (Multilane Highway)1.04All Types (Unspecified)1.091.13

Table 2.4: Potential Crash Effects of Paved Right Shoulder Width on Divided Roadways

Source: Highway Safety Manual

Note: Base conditions = 8 FT wide shoulders N/A = Standard error of CMF is unknown

Bicycle and Pedestrian Shoulder Guidelines

Per the Arizona State Department of Transportation State Transportation Board's Policies, it is a policy of the Board to encourage bicycling and walking as a viable transportation mode and to actively work toward improving Arizona's transportation network to accommodate these modes. To accommodate bicycle travel, AASHTO recommends that paved shoulders be at least four feet wide – this measurement does not include the width of rumble strips.

3. Existing Conditons Assessment

Data Collection

// ADOT

ADOT's GIS section, Bridge group, and Traffic Records Division now manage a robust and more accurate repository of transportation databases. At the onset of the study, the study team met with the GIS Section and ADOT PM to obtain the data identified in Table 3.1. Each database was reviewed for quality and the data was adjusted where appropriate.

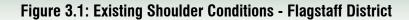
Table 3.1: Data Items and Sources

Dataset	Source
Shoulder Conditions	ADOT GIS section
- Paved shoulders	
- Unpaved shoulders	
- Guardrail	
- Barriers	
Accident Location Information and Surveillance System (ALISS) Crash Database	ADOT Traffic Records
Traffic volumes (AADT)	ADOT GIS section
- Current and past 5 years	
- Vehicle classification, K & D factors	
- Seasonal adjustment factors	
Future traffic volumes	ADOT GIS section
Functional classification	ADOT GIS section
Highway video log	ADOT GIS section
Highway centerline GPS data	ADOT GIS section
Highway log	ADOT GIS section
- Median type	
- Lane width	
- Grade/Terrain	
- Speed	
- Traffic Signals	
ATIS Dataset	ADOT GIS section
Statewide Transportation Improvement Program (STIP)	ADOT MPD

Dataset	Source
Highway Performance Monitoring System (HPMS)	ADOT GIS section
- Beginning MP, Ending MP	
- Ownership	
- Lanes	
- Access Center Lane	
- Median and median width	
- Curve and Curve Length	
- Horizontal Alignment	
- Vertical Alignment	
- Urban and Rural	
Transportation Data Management System (TDMS)	ADOT GIS section
Bridges and Structures	ADOT Bridge Group
As-built drawings	ADOT ROW

Table 3.1: Data Items and Sources (Continued)

Existing Shoulder Widths


JACOBS

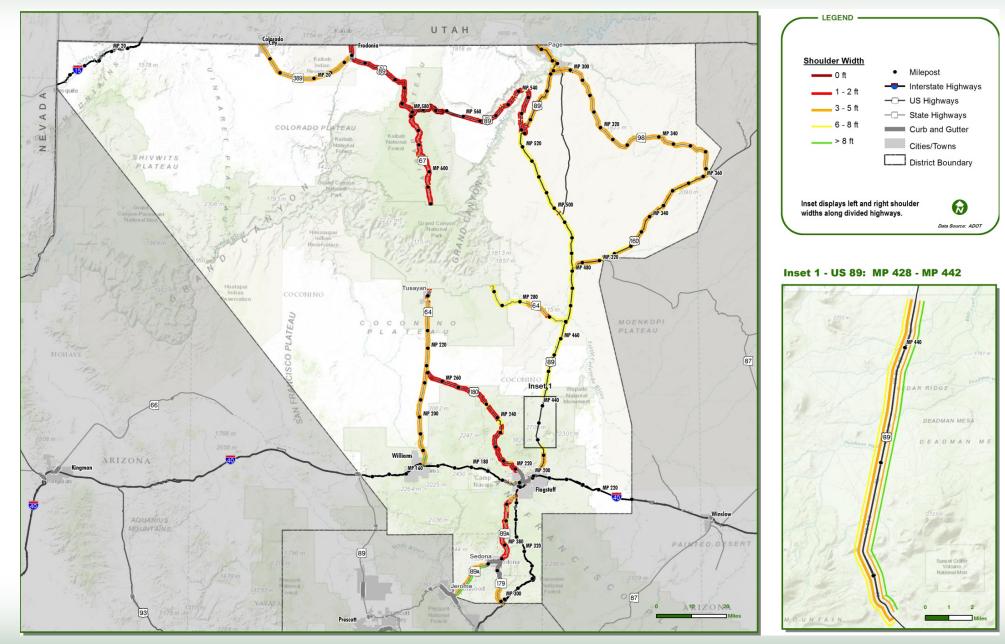
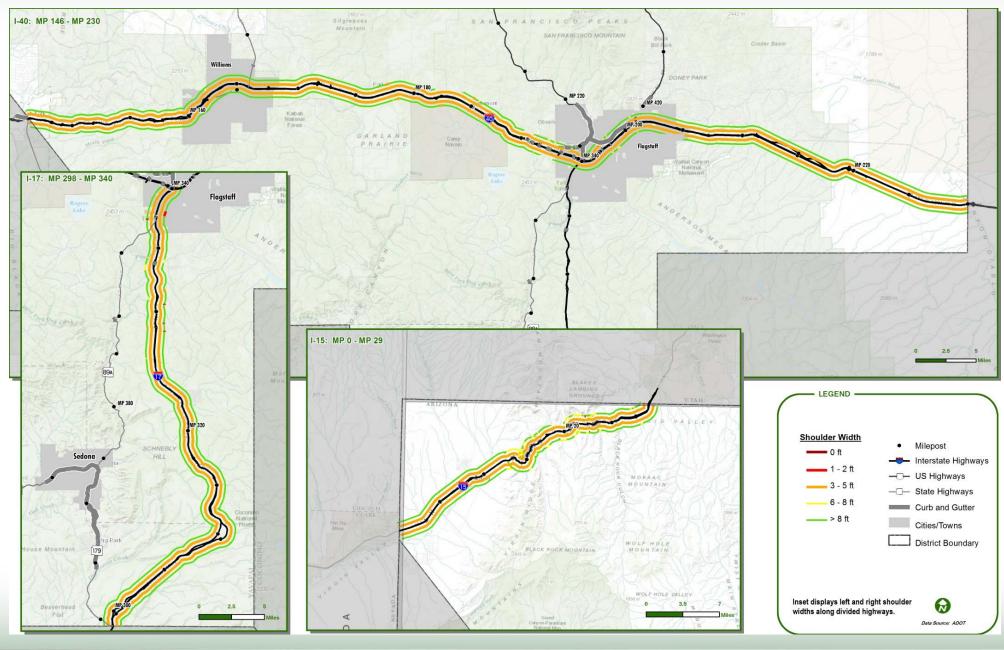
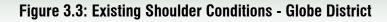
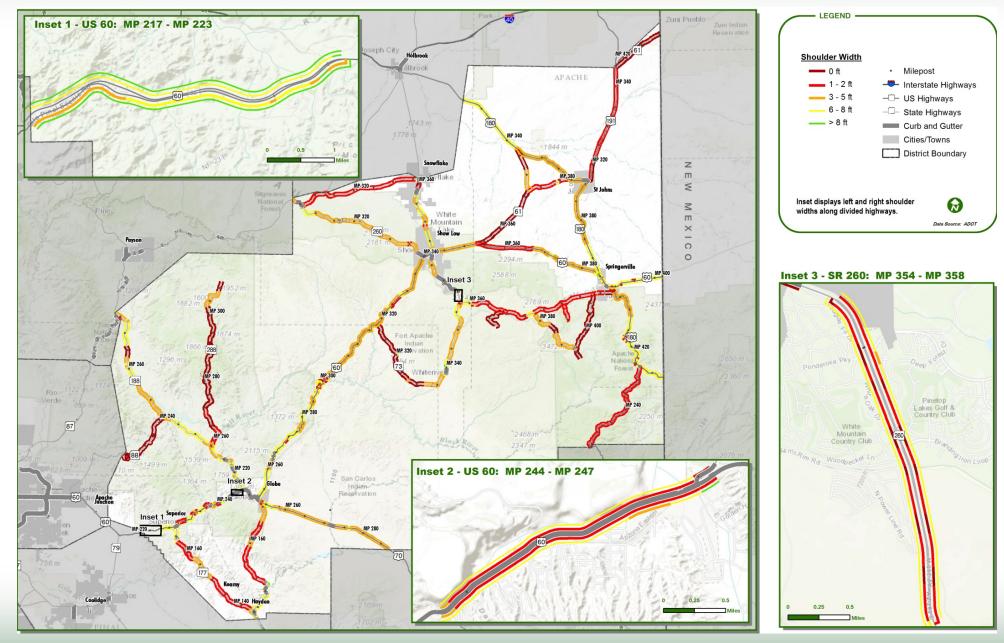
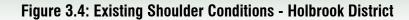

Compiling a comprehensive inventory of existing shoulder locations and conditions is an essential first step before evaluating the need for improving highway shoulders. ADOT's existing shoulder data set was used as the starting point. Verification of the shoulder width data was broken into three steps: District Engineer consultation, verification of corridors using ADOT's videolog, and finally verification of randomly selected locations based on shoulder related crash frequency using ADOT's videolog. ADOT's District Engineers have a first-hand understanding on the roadway conditions within their district. The study team met with each District to obtain feedback on shoulder width conditions based on ADOT's GIS dataset. Thirteen highway corridors were recommended by the ADOT District staff for review; and based on measurements acquired from ADOT's PhotoLog, shoulder widths were updated. Table 3.2 provides a summary of the accuracy rating of the shoulder width GIS dataset against manually acquired measurements.

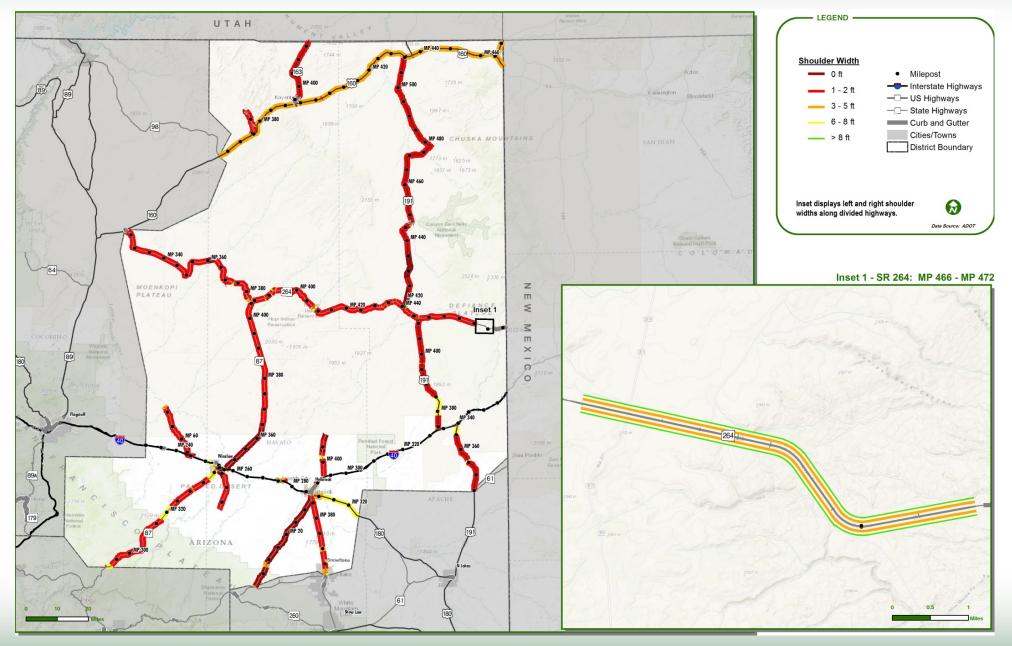
Table 3.2: Manual Verification of Shoulder Width GIS Data Accuracy			
Shoulder Width Range	Number of Segments Recommended for Review	Percent of PhotoLog Observations Matching GIS Data	
0 FT	1	100%	
1 - 2 FT	11	91%	
3 - 5 FT	26	92%	
6 - 8 FT	14	100%	
> 8 FT	11	100%	

- 0.0 Manual Varification of Obsulder Width OlO Date A

Figures 3.1 to 3.16 illustrate the existing shoulder width conditions in each ADOT District.


Figure 3.2: Existing Shoulder Conditions - Flagstaff District (Divided Highways)


JACOBS

9

JACOBS

11

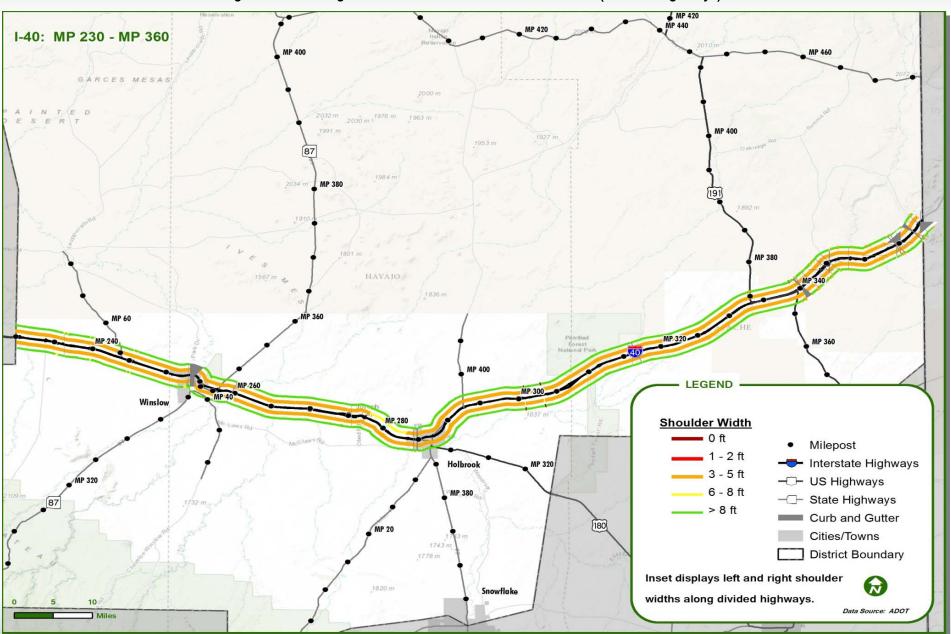
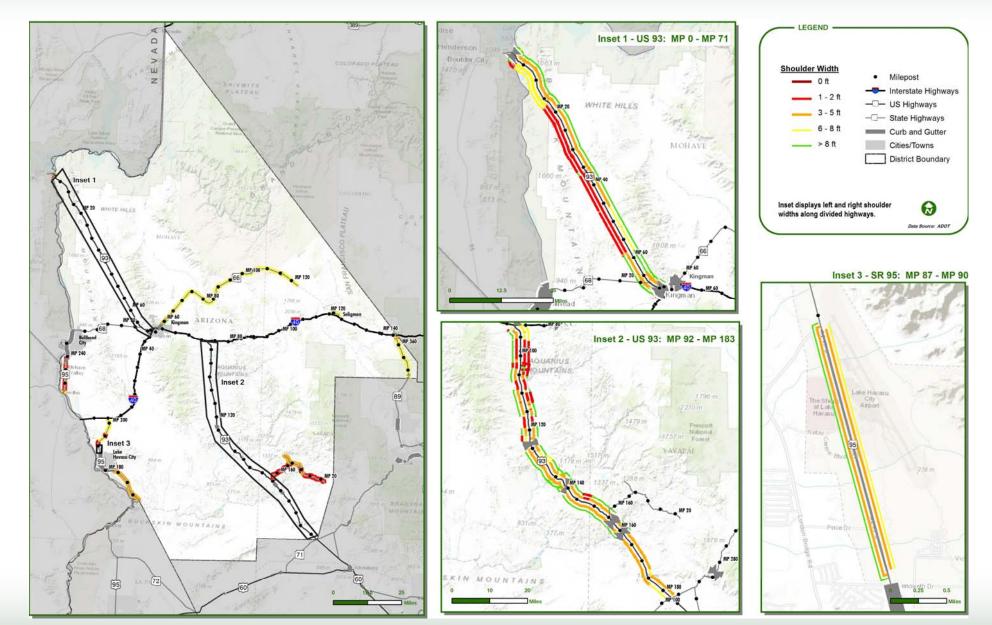



Figure 3.5: Existing Shoulder Conditions - Holbrook District (Divided Highways)

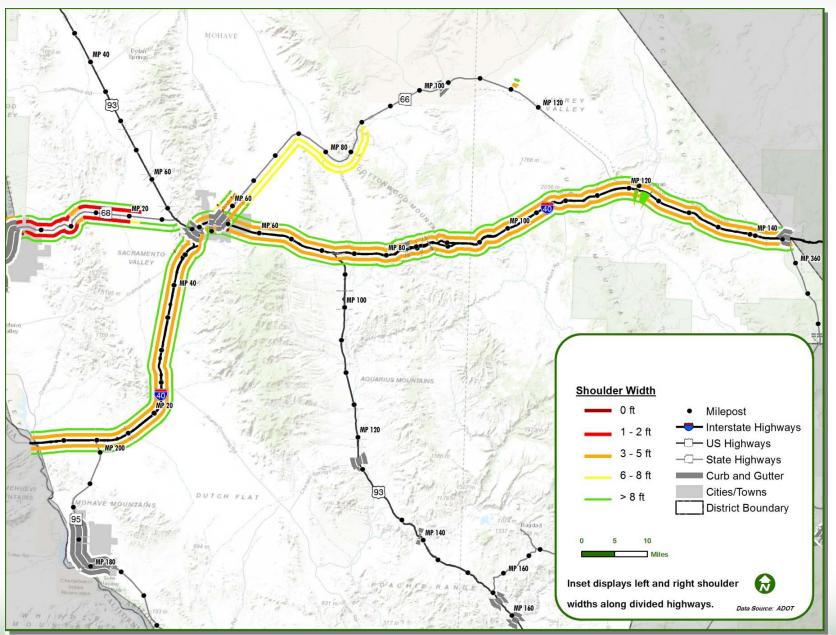
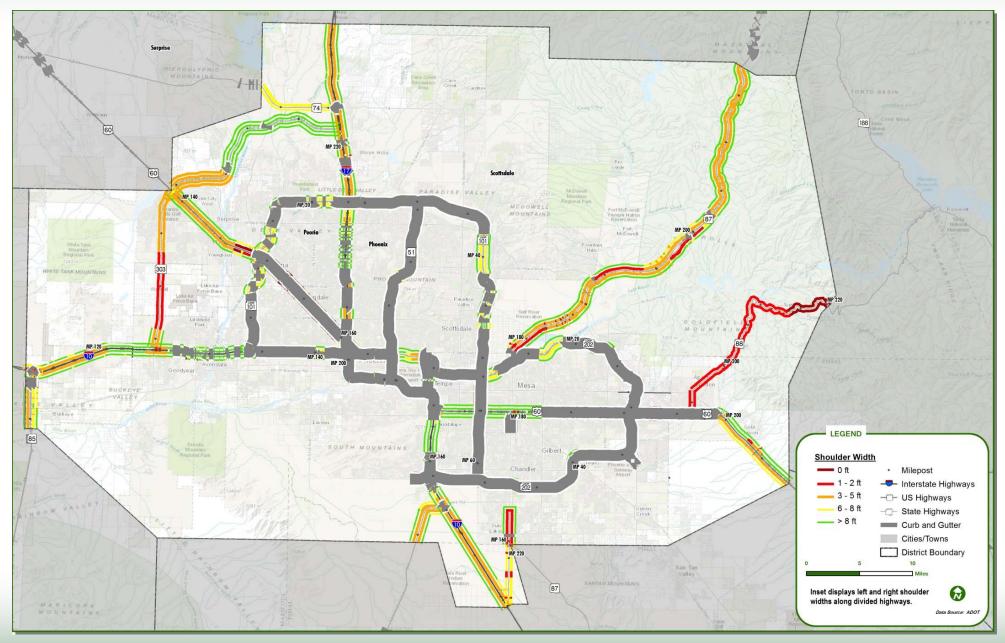
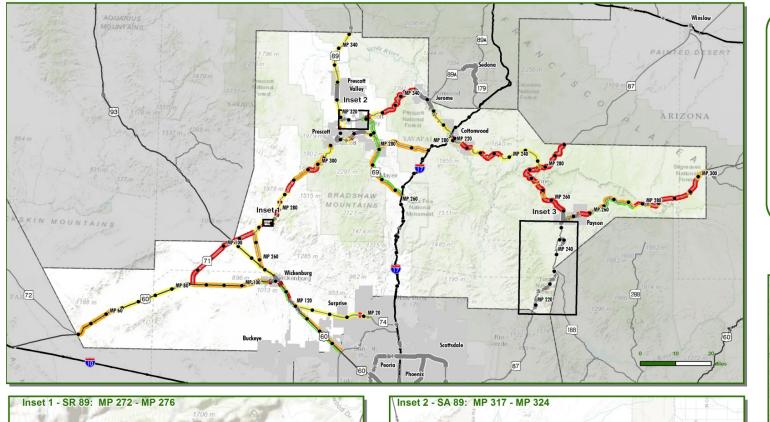

ADOT Statewide Shoulders Study Task Assignment MPD 059-14

Figure 3.6: Existing Shoulder Conditions - Kingman District

JACOBS

ADOT Statewide Shoulders Study Task Assignment MPD 059-14

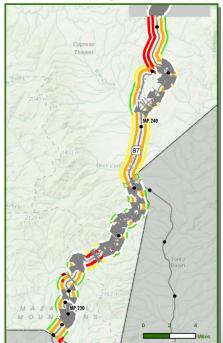

Figure 3.7: Existing Shoulder Conditions - Kingman District (Divided Highways)

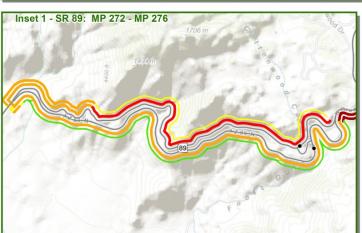

JACOBS

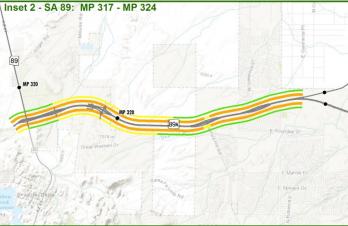
///ADOT

ADOT Statewide Shoulders Study Task Assignment MPD 059-14

Figure 3.8: Existing Shoulder Conditions - Phoenix Maintenance District

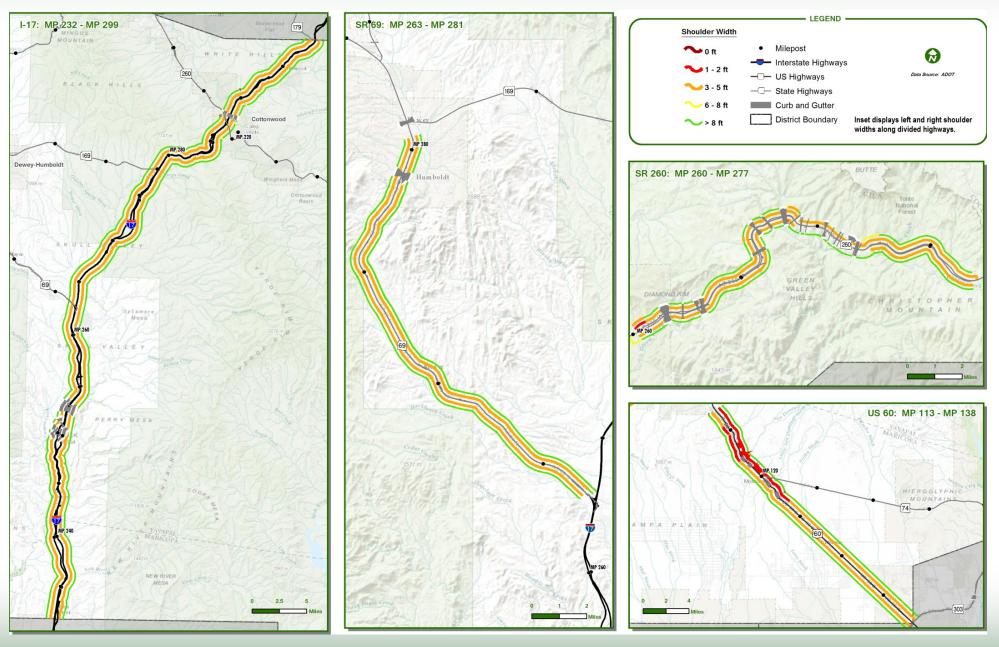
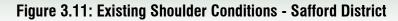


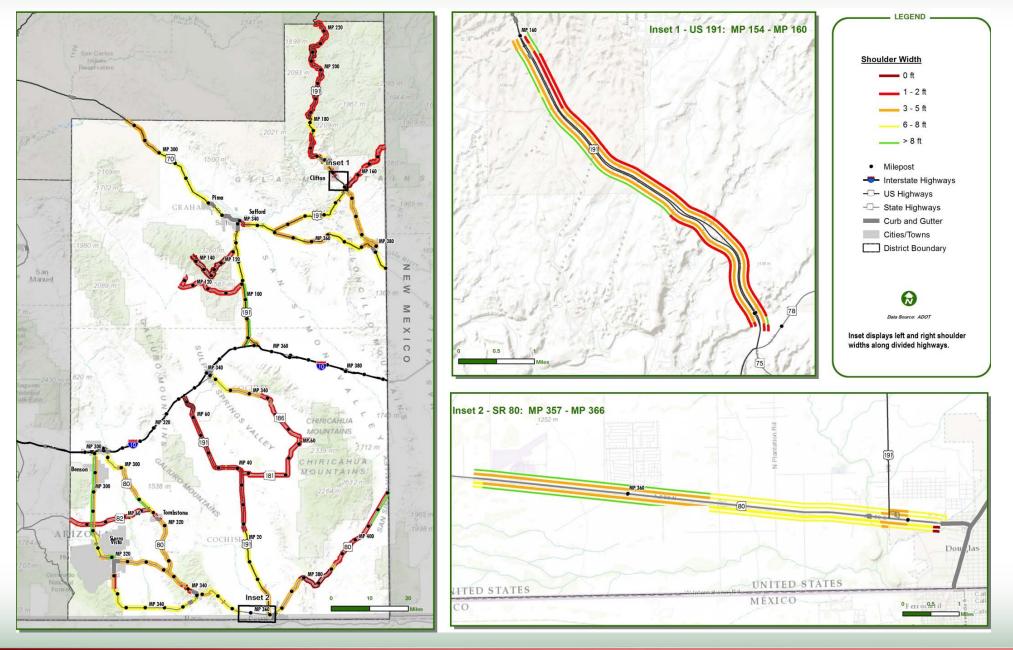

Figure 3.9: Existing Shoulder Conditions - Prescott District

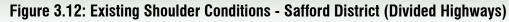


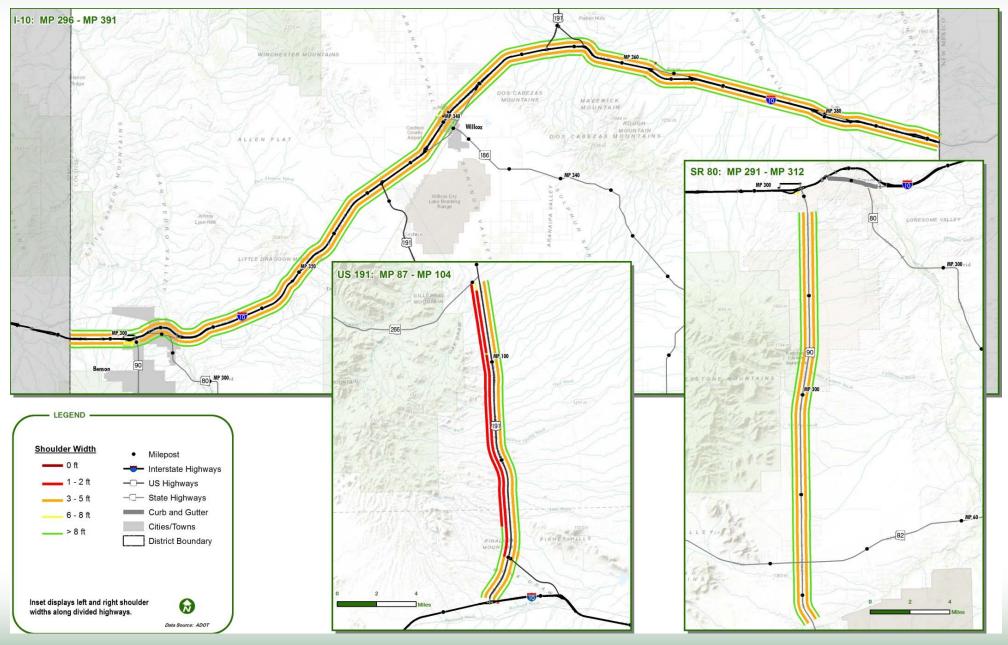
LEGEND

Inset 3 - SR 87: MP 218 - MP 251

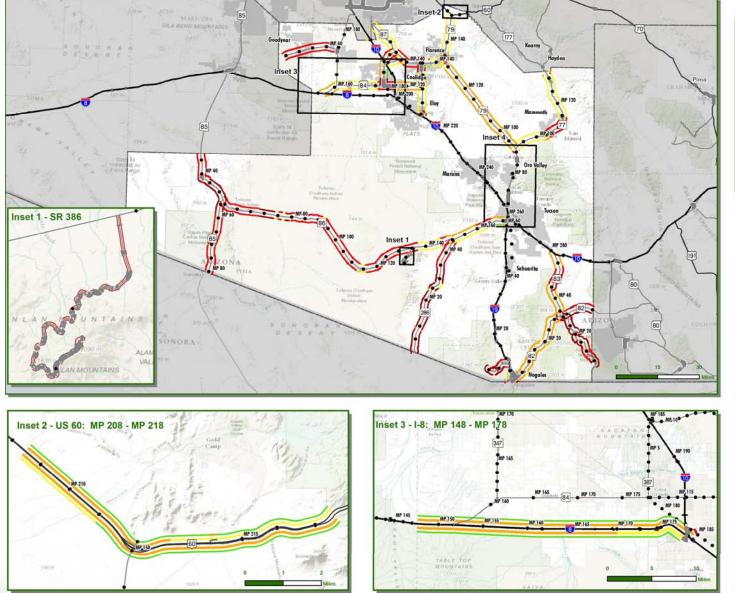




Figure 3.10: Existing Shoulder Conditions - Prescott District (Divided Highways)


JACOBS

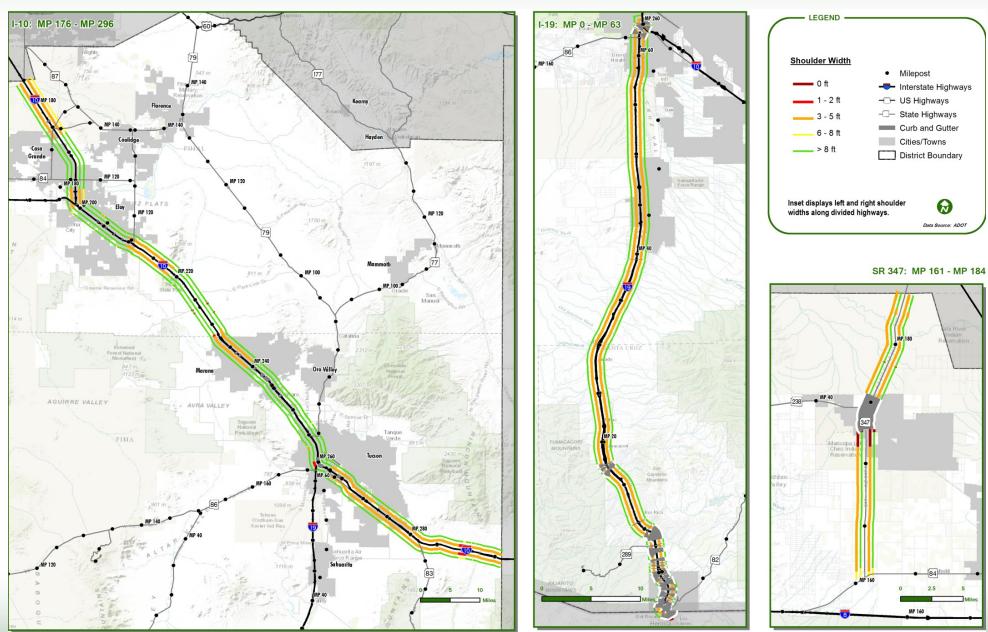

the set of the set of

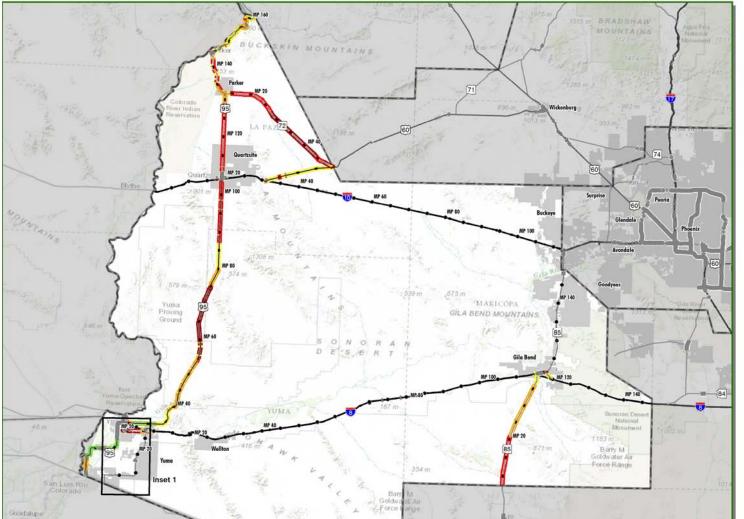
17



JACOBS -

Figure 3.13: Existing Shoulder Conditions - Tucson District

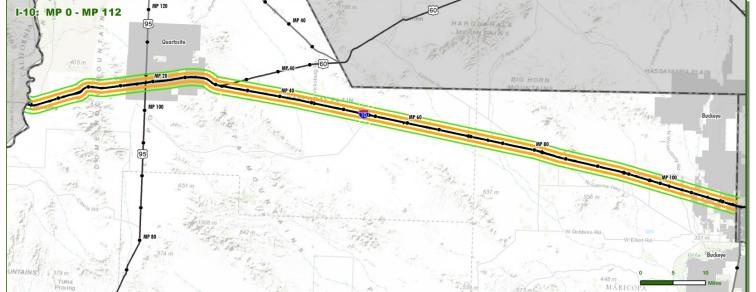


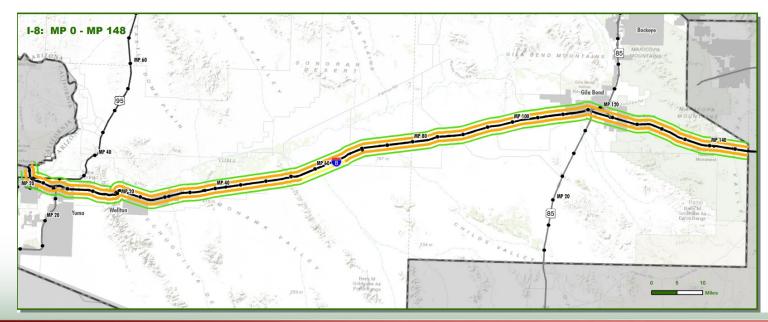

LEGEND

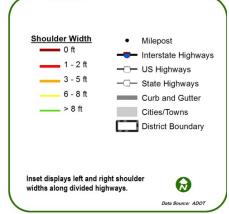
Inset 4 - SR 77: MP 68 - MP 92

Figure 3.14: Existing Shoulder Conditions - Tucson District (Divided Highways)

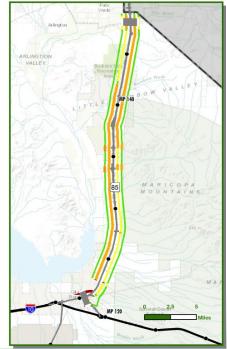
Figure 3.15: Existing Shoulder Conditions - Yuma District




20

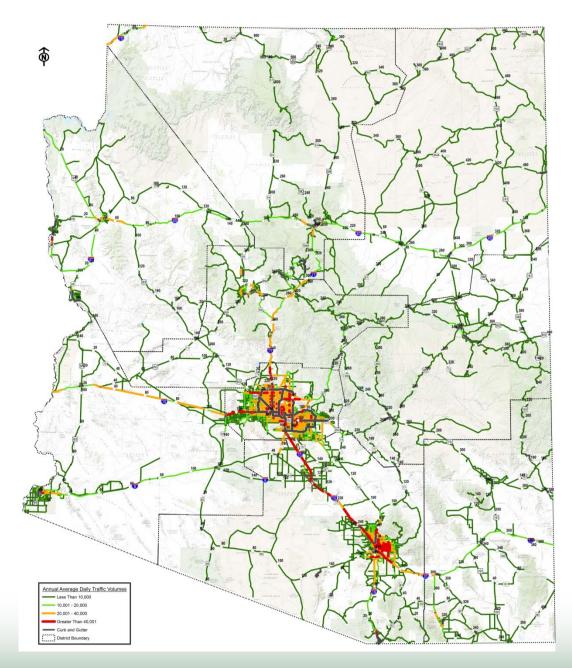

JACOBS

SONORA



SR 85: MP 120 - MP 149

LEGEND



Existing Traffic Conditions

/ ADOT

Existing traffic count data was obtained from ADOT to determine the existing traffic conditions on Arizona's State Highway System. Figure 3.17 illustrates the existing traffic conditions. Key traffic condition information illustrated in the figures includes:

- Highest traffic volumes are located within the Phoenix metropolitan area, along the I-10 corridor between Phoenix and Tucson, within the Tucson metropolitan area, and along interstates and highways entering urban areas.
- US 93, US 95, SR 89, SR 89A, SR 69, SR 87, US 60, and SR 90 have portions of the highway that have traffic volumes of over 10,000 AADT.

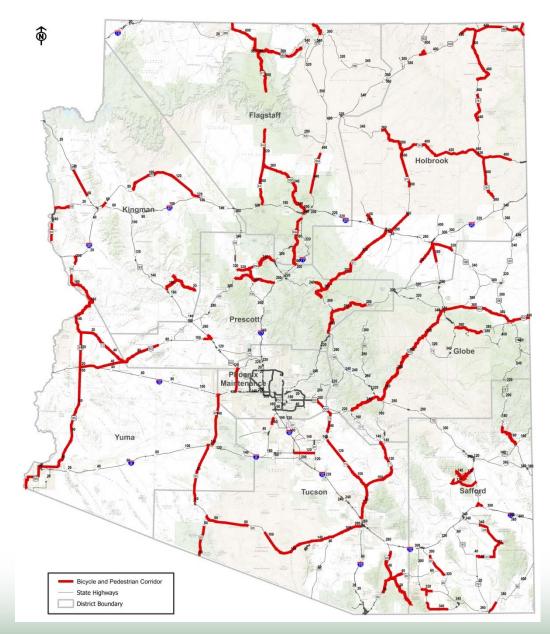
Figure 3.17: Existing Traffic Conditions

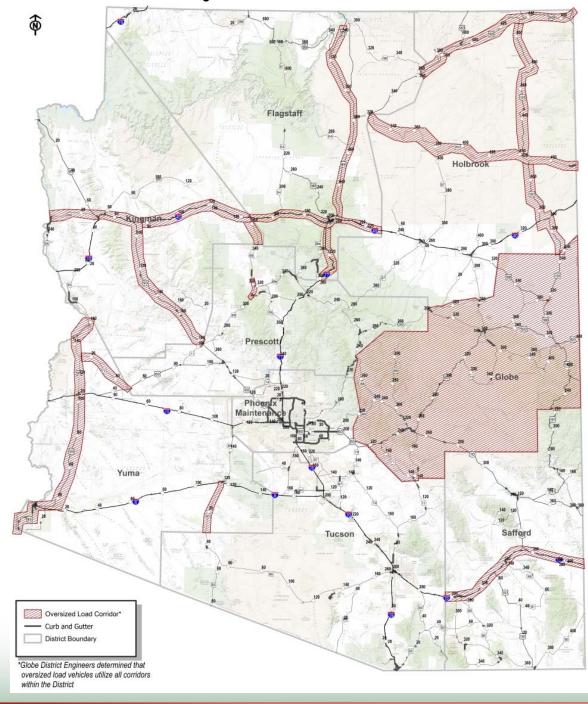
Pedestrian and Bicycle Routes

/ ADOT

Sufficient shoulders are not only advantageous for motorists; shoulders provide bicyclist and pedestrians that utilize highways for recreational purposes or for general mobility, a safer alternative than riding within the travel lanes. In an effort to encourage bicycling and walking, the ADOT State Transportation Board initiated a policy of "promoting increased use of bicycling and walking, and accommodating bicycle and pedestrian needs in the planning, design, and construction of transportation facilities alongside state highways."

To assist in obtaining funding, shoulder conditions were analyzed against safety performance measures. Deficient road segments that are heavily utilized by pedestrians and/or bicyclists would receive a higher priority since the routes may not provide safe shoulder conditions. Figure 3.18 provides an illustration of the corridors that ADOT District Engineers deemed as high pedestrian/bicycle corridors.




Figure 3.18: Pedestrian and Bicycle Corridors

Oversized Load Corridors

JACOBS

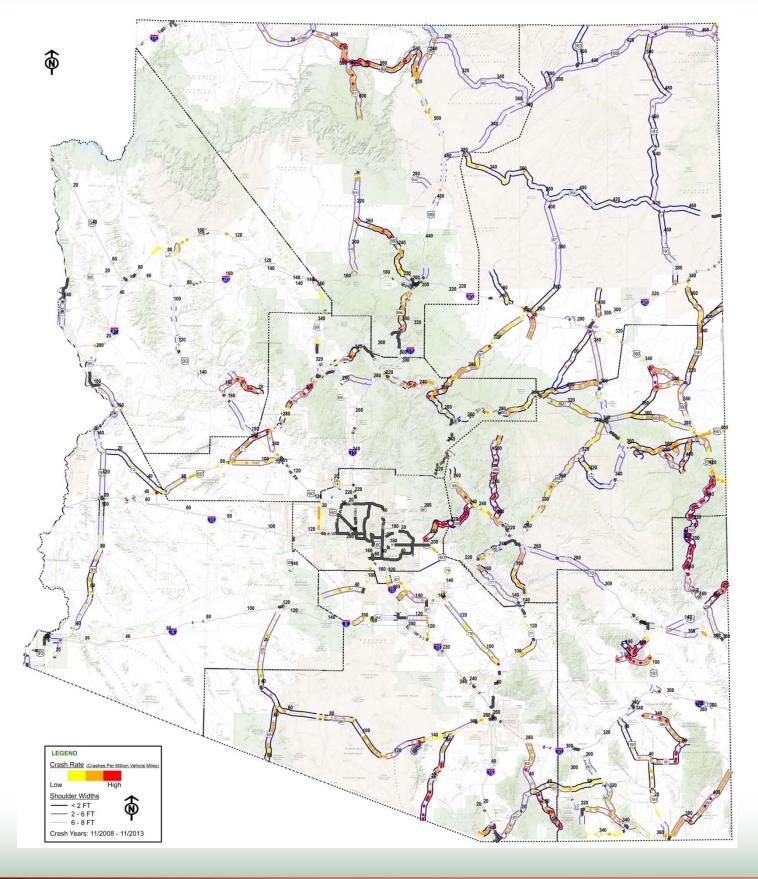
/ ADOT

An oversized load is a vehicle that exceeds the standard legal size and/or weight limit for a roadway. Examples of oversize loads include construction machines, pre-built homes, shipping containers, etc. In Arizona, vehicles that exceed the legal dimensions are required to obtain a special permit to travel on state routes and may require an escort. Oversized loads often have a width greater than the standard travel lane width; therefore, on-coming traffic must utilize shoulders to allow the oversized loads to safely pass. In order to identify roadway segments that need to be improved to accommodate oversized vehicles, ADOT District Engineers were asked to identify oversized load corridors (See Figure 3.19).

Crash Analysis

Crash analysis was conducted to identify trends, high crash rate corridors, and safety hazard locations that need to be addressed to improve safety. Data was obtained from ADOT's Accident Location Identification Surveillance System (ALISS) database for all crashes occurring between November 2008 and November 2013. The total number of crashes, crash rate, injury crash rate, and number of *equivalent property damage only crashes* (EPDO: Equivalent Property Damage Only) were estimated for each highway.

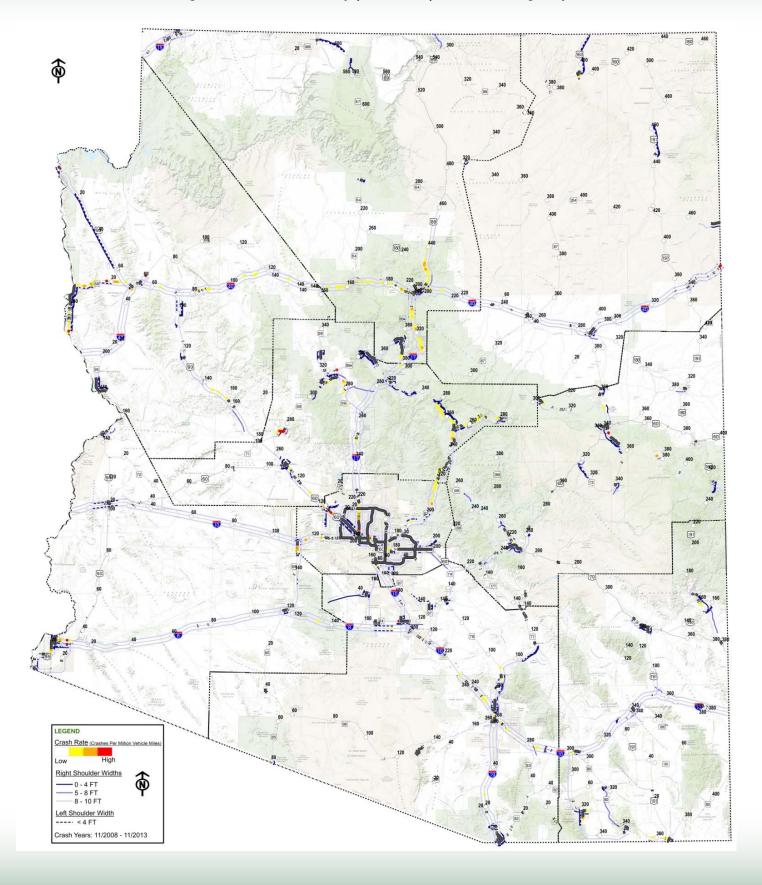
Crash rates are calculated to determine relative safety compared to other roadways, segments, or intersections. The combination of crash frequency (crashes per year) and vehicle exposure (traffic volumes or miles traveled) results in a crash rate. Crash rates are expressed in terms of crashes per million vehicle miles traveled for roadway segments. Figure 3.20 and Figure 3.21 illustrate crash rates along the Arizona State Highway System for 2-lane and multilane roadways, respectively.


Equivalent Property Damage Only

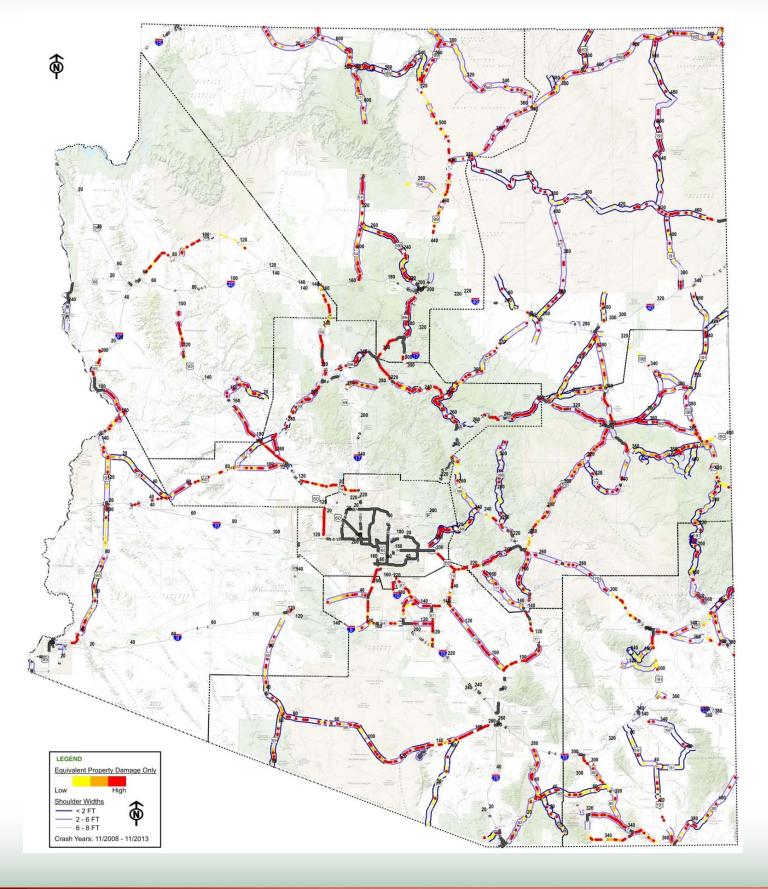
EPDO represents the relative number of Property Damage Only (PDO) or non-injury crashes. It takes into account the number of crashes and the severity of the crashes. Each crash is converted to an equivalent PDO using a multiplier for each crash type. Table 3.3 lists the multipliers used to derive the EPDO value. Figure 3.22 and Figure 3.23 illustrate the EPDO per lane along the Arizona State Highway System for 2-lane and multilane roadways, respectively.

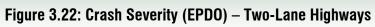
Crash Type	Equivalent PDO Crashes (multiplier)
Non-injury or Property Damage Only (PDO)	1
Possible Injury	2
Minor Injury	4
Severe Injury	7
Fatal	12

Table 3.3: EPDO Conversion Factors



JACOBS


// ADOT



JACOBS

///ADOT

JACOBS

///ADOT

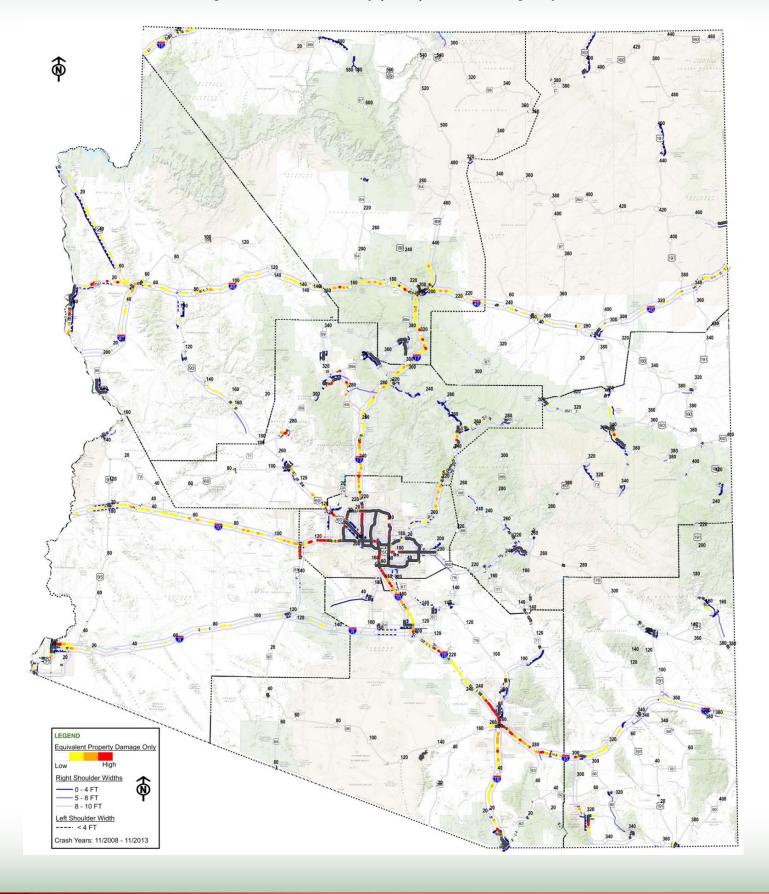


Figure 3.23: Crash Severity (EPDO) – Multilane Highways

JACOBS

///ADOT

Stakeholder Outreach - Phase I

Stakeholder Outreach - Phase I included individual meetings with each ADOT District staff. Meetings with the Districts were conducted April 22-April 30, 2014. The primary purpose of these meetings was to obtain feedback from each of the Districts about the following:

- Review and verify existing shoulder width conditions
- Review general and shoulder related crash data analysis results
- · Identify any inconsistencies or errors in the background data
- Obtain Districts preference for preliminary project locations based on their understanding of local conditions
- · Identify already planned and programmed improvements, if any
- Obtain consensus on evaluation criteria and preliminary prioritization methodology

Table 3.4 lists each District's suggested preliminary locations for shoulder improvements. The beginning and ending milepost ranges in the table represent the general problem area and not the exact location and length for shoulder improvements. A full summary of the feedback received from each District is included in *Working Paper 1: Existing Conditions*.

Route	Direction	BMP	EMP	District	Priority*	Comments
SR 179	NB/SB	298.87	306.00	Flagstaff	4	SR 17: I-17 to Village of Oak Creek
SR 64	EB/WB	185.46	237.08	Flagstaff	5	Pockets from Williams to Tusayan
SR 89A	NB/SB	374.84	398.93	Flagstaff	2	Rim to Flagstaff (project in the works)
SR 98	EB/WB	297.46	361.56	Flagstaff	8	Sections of SR 98
US 160	EB/WB	311.46	361.56	Flagstaff	7	Sections of US 160
US 180	EB/WB	215.44	265.77	Flagstaff	3	Northwest of Flagstaff (project in the works)
US 89	SB	455.00	430.00	Flagstaff	1	Wauneta to Sunset Crater
US 89A	NB/SB	533.00	543.00	Flagstaff	6	Areas of US 89A near Marble Canyon
					Low	
SR 188	EB/WB	269.00	264.00	Globe	priority	
					Low	
SR 288	EB/WB	305.00	311.90	Globe	priority	
				.	Low	
SR 61	NB/SB	352.88	381.86	Globe	priority	
US 60	EB/WB	242.00	227.00	Globe	N/A	
US 60	EB/WB	282.00	300.00	Globe	N/A	
US 60	EB/WB	346.00	353.00	Globe	N/A	
US 60	EB/WB	358.00	369.00	Globe	N/A	
SR 264	EB/WB	384.00	321.97	Holbrook	N/A	SR 264 west of SR87
SR 377	NB/SB	0.00	33.83	Holbrook	N/A	
US 191	NB/SB	448.00	510.34	Holbrook	N/A	US 191 north of Chinle
US 93	Both	144.00	151.00	Kingman	1	

Table 3.4: ADOT District Engineer Recommended Shoulder Improvement Locations

*Priority rankings were provided by each District. Priorities listed as "N/A" were not given a priority by the District.

JACOBS

Table 3.4: ADOT District Engineer Recommended Shoulder Improvement Locations (Continued)

Route	Direction	BMP	EMP	District	Priority*	Comments
SR 260	EB/WB	282.50	302.70	Prescott	N/A	H8245
SR 71	NB/SB	85.80	108.40	Prescott	N/A	
SR 71	NB/SB	108.80	109.60	Prescott	7	
SR 87	SB	246.20	250.90	Prescott	1	
SR 87	NB/SB	255.90	266.00	Prescott	2	
SR 87	NB/SB	268.20	270.50	Prescott	N/A	To be considered for climbing / passing lanes
SR 87	NB/SB	270.50	278.30	Prescott	6	
SR 87	NB/SB	278.70	290.10	Prescott	N/A	
SR 89	NB/SB	258.40	267.80	Prescott	3	
SR 89	NB/SB	278.20	282.70	Prescott	8	(280.4 - 281.9 exception)
SR 89	NB/SB	286.20	307.60	Prescott	N/A	
SR 89	NB/SB	307.60	309.50	Prescott	4	
SR 89A	NB/SB	324.80	326.10	Prescott	5	
SR 89A	NB/SB	329.80	331.20	Prescott	N/A	H8377
SR 89A	NB/SB	331.60	333.00	Prescott	10	
SR 89A	NB/SB	346.10	349.00	Prescott	9	
SR 72	EB/WB	13.11	49.91	Yuma	1	
SR 85	NB/SB	0.00	32.50	Yuma	3	SR 85 South
SR 95	NB/SB	132.00	143.93	Yuma	2	SR 72 JctParker
US 95	NB/SB	47.00	104.51	Yuma	4	Aberdeen Road-Quartzsite

*Priority rankings were provided by each District. Priorities listed as "N/A" were not given a priority by the District.

4. Identification and Prioritization Methodology

Two-lane highways and multilane highways have different physical and traffic characteristics and their mobility and safety performance is evaluated using different parameters. For this reason, separate methodologies were developed to identify and prioritize:

· Shoulder improvements on two-lane highways

// ADOT

• Shoulder improvements on multilane highways

Methodology to Identify Shoulder Improvements on Two-Lane Highways

Figure 4.1 illustrates the steps utilized to identify and prioritize potential locations for shoulder improvements on twolane highways. Once preliminary lists of potential candidates were identified, they were ranked on a statewide basis using the criteria and score ranges listed in Table 4.1.

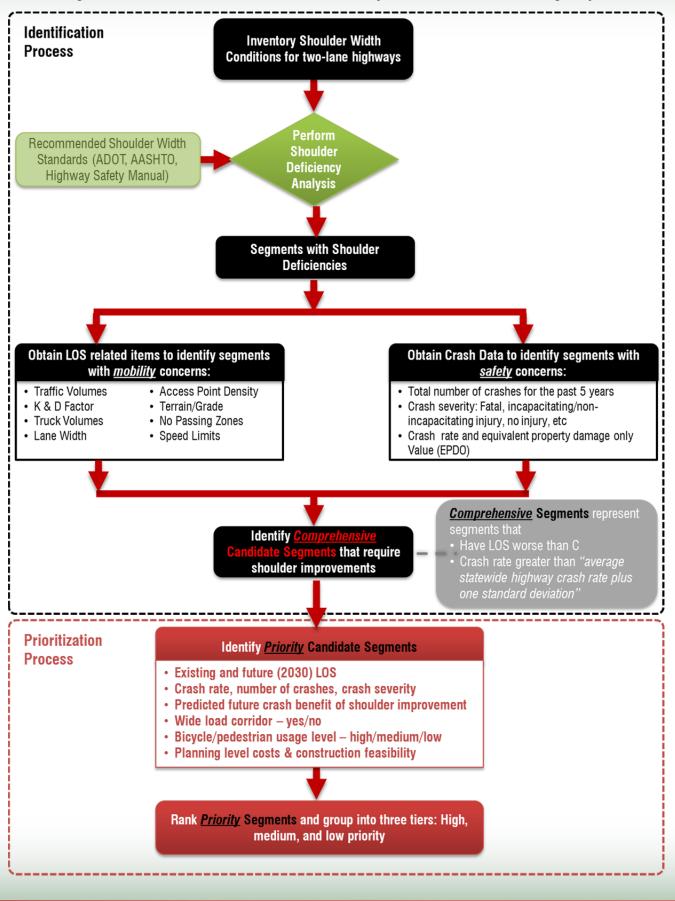

Criteria	Max Points	Points Distribution
Mobility – 25%	25	
Existing LOS: PTSF – Percent Time Spent Following	5	Z-score method*
Existing LOS: PFFS – Percent of Free Flow Speed	5	Z-score method*
Future LOS: PTSF – Percent Time Spent Following	5	Z-score method*
Future LOS: PFFS – Percent of Free Flow Speed	5	Z-score method*
Wide Load Corridor	5	5 points if segment was a wide load corridor; 0 points if NOT a wide load corridor
Safety – 50%	50	
Existing Crash Rate	15	Z-score method*
Existing Crash Severity (EPDO)	15	Z-score method*
Future Crash Severity (Potential Future Crash Benefit)	10	Z-score method*
Bicycle/Pedestrian Usage Level	10	10 points for segments with high bike/ped usage; 0 points if NOT a bike/ped corridor
Construction Feasibility - 25%	25	
Cost Per Lane Mile	10	Proportional distribution of points based on cost per lane mile
Potential Number of Bridges that Require Widening	15	0 bridges = 15 pts; 1 bridge = 12 pts; 2 bridges = 10 pts; 3 bridges = 8 pts; 4 bridges = 6 pts; 5 bridges = 4 pts; 6 bridges = 2 pts; Greater than 6 bridges = 0 pts

Table 4.1: Prioritization Criteria for Shoulder Improvements on Two-Lane Highways

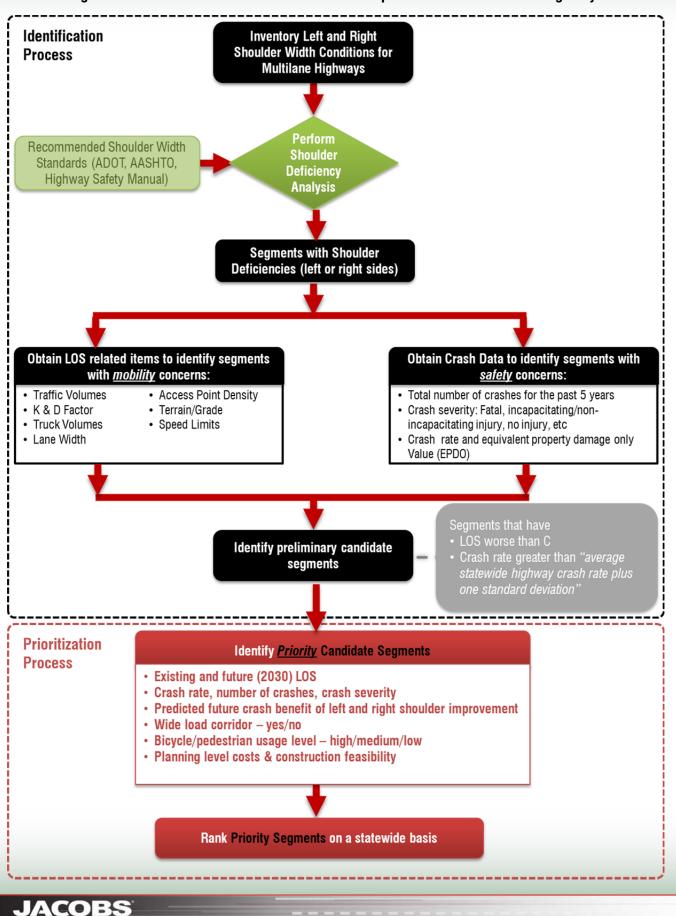
*Each record's z-score was determined based on its relative distance from the mean of all records. Based on the record's z-score, a proportional point value between 0 and Max Points was then assigned to each record.

ADOT Staten

JACOBS

Methodology to Identify Shoulder Improvements on Multilane Highways

// ADOT


Figure 4.2 illustrates the steps utilized to identify and prioritize potential locations for shoulder improvements on multilane highways. Once preliminary lists of potential candidates were identified, they were ranked on a statewide basis using the criteria and score ranges listed in Table 4.2.

Criteria	Max Points	Points Distribution
Mobility – 25%	25	
Existing LOS: Density	10	Z-score method*
Future LOS: Density	10	Z-score method*
Wide Load Corridor	5	5 points if segment was a wide load corridor; 0 points if NOT a wide load corridor
Safety – 50%	50	
Existing Crash Rate	15	Z-score method*
Existing Crash Severity (EPDO)	15	Z-score method*
Potential Future Crash Reduction Level – Right Shoulder	12	Z-score method*
Potential Future Crash Reduction Level – Left Shoulder	3	Z-score method*
Bicycle/Pedestrian Usage Level	5	10 points for segments with high bike/ped usage; 0 points if NOT a bike/ped corridor
Construction Feasibility 25%	25	
Cost Per Lane Mile	10	Proportional distribution of points based on cost per lane mile
Potential Number of Bridges that Require Widening	15	0 bridges = 15 pts; 1 bridge = 12 pts; 2 bridges = 10 pts; 3 bridges = 8 pts; 4 bridges = 6 pts; 5 bridges = 4 pts; 6 bridges = 2 pts; Greater than 6 bridges = 0 pts

Table 4.2: Prioritization Criteria for Shoulder Improvements on Multilane Highways

* Each record's z-score was determined based on its relative distance from the mean of all records. Based on the record's z-score, a proportional point value between 0 and Max Points was then assigned to each record.

ADOT Statewide Shoulders Study Task Assignment MPD 059-14

Figure 4.2: Identification Process for Shoulder Improvements on Multilane Highways

Stakeholder Outreach – Phase II

/// ΑΟΟΤ

The second phase of stakeholder outreach included individual meetings with each ADOT District staff. Meetings with the Districts were conducted October 8 - 15, 2014. The primary purpose of these meetings was to review:

- Design guidelines used to define deficiencies
- Listing of preliminary candidate locations
- District suggested locations
- Crash data analysis results
- Recommended ranking/prioritization criteria

The study team presented the design guidelines used to define shoulder deficiencies. 2014 ADOT Roadway Design Guidelines, the AASHTO Design Guidelines, and the Highway Safety Manual (HSM) criteria were evaluated. ADOT's Roadway Design Guidelines were used as the primary criteria to identify shoulder deficiencies.

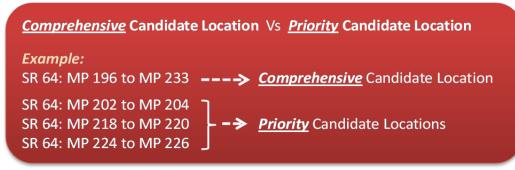
HSM indicated that widening the shoulder from 6 - 8 ft may not yield a significant reduction in crashes; the study team recommended that roadway segments that had at least 6 ft of shoulder width be eliminated from consideration for two-lane highways. District staff concurred with the recommendation and asked the study team to confirm that shoulder related crashes were not a concern before eliminating those segments from consideration. District staff also concurred with the study team's suggestion to remove segments that have 8 - 10 ft shoulder on multilane highways unless crash analysis warrants the need for shoulder improvements.

A full summary of the feedback received from each District is included in *Working Paper 2: Evaluation Criteria and Plan for Improvements.*

5. Summary Results – Shoulder Improvements on Two-Lane Highways

For two-lane highways, a shoulder deficiency analysis was conducted to identify all highway segments that did not meet minimum shoulder width standards. These segments were then evaluated against the following criteria to identify *comprehensive candidate locations* for shoulder improvements.

LOS C or worse


///ADOT

• Crash rate is greater than "average statewide highway crash rate plus one standard deviation"

A review of the *comprehensive candidate locations* revealed that several segments were too long and may not be feasible for implementation. To help the Districts further prioritize the segments, each larger segment was divided into smaller segments. These smaller segments were evaluated against the following additional set of criteria to generate a list of **priority candidate locations** that would be easier to implement.

- Existing and future (2030) LOS
- Crash rate, number of crashes, crash severity
- Predicted future crash benefit of shoulder improvement
- Wide load corridor yes/no
- Bicycle/pedestrian usage level high/medium/low
- Planning level costs & construction feasibility

Example:

The **priority candidate locations** were scored and ranked at both Statewide and District level and grouped into three tiers – high, medium, and low priority. The results for each District are summarized in the following sections:

- Comprehensive candidate locations that need shoulder improvements
- Priority segments for shoulder improvements.

Figures 5.1 to 5.9 illustrate the shoulder improvements locations in each District followed by project summary sheets for the Tier 1 locations.

Locations identified for shoulder improvements in Tables 5.1 – 5.18 represent only the general problem area and not the exact location and length of the shoulder improvements.

Planning Level Cost Estimates

//ADO

Planning level cost estimates were developed based on typical per-mile/foot construction costs for widening and are expressed in 2015 dollars and have not been field verified. The following assumptions were used to derive the planning level cost estimates for the Tier 1 (priority) candidate segments:

- Widening shoulder to 8 FT: \$900,000/mile for flat terrain
 - For each segment, the actual footage of additional shoulder width needed was estimated and the cost was then prorated. For example, if the candidate segment currently has a 2 FT shoulder, the prorated cost to widen the shoulder an additional 6 FT to meet the 8 FT standard was estimated.
 - Existing actual shoulder widths varied within each candidate segment; therefore, segments were divided into 0-2 FT, 3-5 FT, 5-8 FT, and 8 FT or greater shoulder widths. The midpoint of the candidate segments shoulder width range was utilized as the basis for calculating cost estimates. For example, an average shoulder width of 1 FT was utilized for candidate segments with a shoulder width range between 0-2 FT, 4 FT for segments with a 3-5 FT range, and so forth.
- Topographical constraints:
 - Segments with rolling terrain an additional 10% was added to the base widening cost
 - o Segments with mountainous terrain: an additional 20% was added to the base widening cost
- Bridge Widening: \$200/SQFT
 - The number of bridges within each candidate segment was obtained from the National Bridge Inventory database. Each bridge's overall length, width, and deck width was also obtained.
 - For each bridge, the additional square footage needed to widen the bridge was determined.
 - \circ $\;$ The cost to widen each bridge was then estimated.
- Costs associated with acquiring right-of-way, widening culverts, and environmental mitigation are not included in estimates.
- Unless otherwise noted, recommended projects are not yet funded.

Due to topographical or other physical constraints adjustment factors may need to be applied to the cost estimates to account for increased construction costs. During project implementation the costs for each project may vary; therefore, during the design phase a detailed analysis should be performed to determine actual costs.

Flagstaff District

Table 5.1 presents the list of candidate locations for shoulder improvements on two-lane highways in the Flagstaff District. The candidate locations are ranked at the statewide and district level and grouped into three tiers – high, medium, and low priority. Table 5.2 summarizes the priority candidate improvement locations by tier. Figure 5.1 illustrates the prioritization of improvement projects within the District.

Route	Dir	BMP	EMP	Priority Segments: (Segments that exceed LOS and Crash Rate Threshold)*		
Flagstaff Dis	strict					
S 064	Both	185.6	187.2	MP185.6 - MP187.2		
S 064	Both	187.9	194.0	MP187.9 - MP190		
				MP190 - MP192		
				MP192 - MP194		
S 064	Both	196.0	233.6	MP196 - MP198		
				MP198 - MP200		
				MP200 - MP202		
				MP202 - MP204		
				MP204 - MP206		
				MP210 - MP212		
				MP212 - MP214		
				MP214 - MP216		
				MP216 - MP218		
				MP218 - MP220		
				MP220 - MP222		
				MP222 - MP224		
				MP224 - MP226		
				MP226 - MP228		
				MP228 - MP230		
				MP230 - MP232		
S 064	Westbound	234.3	235.3	MP234.3 - MP235.3		
S 064	Both	236.0	237.0	MP267 - MP268		
S 064	Both	281.7	289.5	MP284 - MP286		
S 067	Both	579.0	610.0			
S 098	Both	294.0	361.0	MP298 - MP300		
				MP300 - MP302		
				MP302 - MP304		
				MP308 - MP310		
				MP318 - MP320		
				MP328 - MP330		

Table 5.1: Two-Lane Highways - Candidate Shoulder Improvement Locations in Flagstaff District

ADOT Statewide Shoulders Study Task Assignment MPD 059-14

Table 5.1: Two-Lane Highways - Candidate Shoulder Improvement Locations in Flagstaff District (Continued)

			-	
Route	ute Dir BMP		EMP	Priority Segments: (Segments that exceed LOS and Crash Rate Threshold)*
Flagstaff Dis	strict			
				MP330 - MP332 MP342 - MP344 MP344 - MP346 MP348 - MP350 MP350 - MP352 MP352 - MP354 MP354 - MP356
S 179	Both	299.0	304.5	MP299 - MP302
0175	Dour	200.0	004.0	MP302 - MP304.5
S 389	Both	0.0	32.1	
SA089	Both	374.0	389.8	MP374 - MP376
07000	DOUI	574.0	505.0	MP380 - MP382
				MP384 - MP386
				MP386 - MP389.8
SA089	Both	390.4	398.7	WF 300 - WF 309.0
U 089	Both	456.6	461.8	MP461.8 - MP460.7
U 089	Both	469.6	470.8	MP469.6 - MP470.8
U 089	Both	409.0	470.0	MP471.6 - MP472.3
U 089	Both	471.0	472.3	MP471.0 - MP472.3 MP474.5 - MP475.4
U 089	Both	474.3	473.4	MP477.4 - MP478.3
U 089	Both	477.4	478.3	MP493.1 - MP494.1
U 089	Both	493.1 505.7	494.1 507.1	MP505.7 - MP507.1
U 089		509.2	512.2	MP509.2 - MP512.2
U 089	Both	519.9	521.2	MP509.2 - MP512.2 MP519.9 - MP521.2
	Both			
U 089	Both	524.4	556.8	MP548 - MP550
				MP550 - MP552
				MP552 - MP554
11.400	Dette	011.0	004.0	MP554 - MP556.8
U 160	Both	311.0	324.0	MP311 - MP314
				MP314 - MP316
				MP316 - MP318
	F 11 .	004.0	000.0	MP318 - MP320
U 160	Eastbound	324.0	332.0	

/ ADOT

Table 5.1: Two-Lane Highways - Candidate Shoulder Improvement Locations in Flagstaff District (Continued)

Route	Dir	BMP	EMP	Priority Segments: (Segments that exceed LOS and Crash Rate Threshold)*
Flagstaff Dis	strict			
U 160	Both	332.0	356.0	MP336 - MP338
				MP340 - MP342
				MP342 - MP344
				MP344 - MP346
				MP346 - MP348
				MP350 - MP352
				MP352 - MP354
				MP354 - MP356
U 160	Eastbound	356.0	358.0	MP356 - MP358
U 160	Both	358.0	362.0	MP358 - MP360
				MP360 - MP362
U 180	Both	218.0	237.4	MP218 - MP220
				MP220 - MP223.2
				MP223.2 - MP226
U 180	Both	239.4	244.2	
U 180	Both	245.4	264.0	
U 180	Eastbound	264.0	265.6	
UA089	Both	524.0	537.3	
UA089	Both	538.5	546.0	
UA089	Southbound	546.0	548.0	
UA089	Both	548.0	609.0	MP590 - MP592
UA089	Both	610.2	612.3	

Priority segments represent segments that

- Have LOS worse than C

- Crash rate greater than "average statewide highway crash rate plus one standard deviation"

District Rankings are Provided in the Following Table

// ADOT

the set of the set of

Table 5.2: Two-Lane Highways - Ranking of Priority Candidate Locations in Flagstaff District								
					Tier	District	Statewide	Cost
Route	Direction	BMP	EMP	Total Points	Level	Rank	Rank	Estimate*
S 064	Both	185.6	187.2	79.33	1	1	6	\$1,458,000
SA089	Both	374.0	376.0	76.02	1	2	23	\$3,780,000
S 064	Both	187.9	190.0	75.49	1	3	28	\$1,881,000
S 064	Both	236.0	237.0	72.80	1	4	45	\$990,000
S 064	Both	224.0	226.0	71.35	1	5	55	\$1,800,000
S 064	Both	230.0	232.0	71.01	1	6	57	\$1,980,000
U 089	Both	474.5	475.4	70.65	1	7	60	\$819,000
S 064	Westbound	234.3	235.3	70.57	1	8	61	\$459,000
S 064	Both	226.0	228.0	70.57	1	9	62	\$1,980,000
S 064	Both	218.0	220.0	70.39	1	10	63	\$1,800,000
S 064	Both	222.0	224.0	70.24	1	11	65	\$1,800,000
U 089	Both	461.8	460.7	70.12	1	12	67	\$981,000
S 064	Both	228.0	230.0	69.96	1	13	68	\$1,980,000
S 064	Both	190.0	192.0	69.75	1	14	72	\$1,980,000
S 064	Both	216.0	218.0	69.65	1	15	75	\$1,800,000
S 064	Both	220.0	222.0	69.58	1	16	77	\$1,800,000
S 064	Both	198.0	200.0	69.49	1	17	82	\$1,980,000
S 064	Both	212.0	214.0	69.24	1	19	89	\$1,800,000
U 089	Both	469.6	470.8	69.21	1	20	90	\$1,044,000
S 064	Both	200.0	202.0	69.12	1	21	94	\$1,980,000
S 064	Both	196.0	198.0	69.10	1	22	96	\$1,980,000
S 064	Both	202.0	204.0	68.95	1	23	101	\$1,980,000
S 064	Both	192.0	194.0	68.95	1	24	102	\$1,980,000
U 089	Both	471.6	472.3	68.79	1	25	106	\$657,000
S 064	Both	210.0	212.0	68.20	2	26	117	
S 064	Both	204.0	206.0	67.68	2	27	121	
S 064	Both	214.0	216.0	67.57	2	28	124	
SA089	Both	380.0	382.0	67.30	2	29	126	
SA089	Both	384.0	386.0	67.24	2	30	127	
SA089	Both	386.0	389.8	65.85	2	31	138	
U 089	Both	548.0	550.0	65.82	2	32	139	
U 089	Both	477.4	478.3	65.81	2	33	140	

Table 5.2: Two-Lane Highways - Ranking of Priority Candidate Locations in Flagstaff District

* Planning level cost estimates were developed for Tier 1 candidate locations only. Cost Estimates developed based on typical per-mile/foot construction costs for widening and are expressed in 2015 dollars and have not been field verified. Costs associated with acquiring right-of-way, widening culverts, and environmental mitigation are not included in estimates. Due to topographical or other physical constraints adjustment factors may need to be applied to the cost estimates to account for increased construction costs. During project implementation, the costs for each project may vary; therefore, during the design phase a detailed analysis should be performed to determine actual costs. Unless otherwise noted, the recommended projects are not yet funded.

/ ADOT

Table 5.2: Two-Lane Highways - Ranking of Priority Candidate Locations in Flagstaff District (Continued)

_		-	_	-		_		
	_				Tier	District	Statewide	Cost
Route	Direction	BMP	EMP	Total Points	Level	Rank	Rank	Estimate*
U 180	Both	218.0	220.0	65.73	2	34	143	
U 180	Both	220.0	223.2	65.37	2	35	149	
S 179	Both	302.0	304.5	64.48	2	36	164	
U 089	Both	550.0	552.0	64.21	2	37	172	
U 160	Both	318.0	320.0	64.16	2	38	177	
U 089	Both	554.0	556.8	63.79	2	39	184	
U 180	Both	223.2	226.0	63.79	2	40	185	
U 160	Both	316.0	318.0	63.78	2	41	186	
S 179	Both	299.0	302.0	63.63	2	42	189	
U 089	Both	552.0	554.0	63.60	2	43	191	
U 160	Both	311.0	314.0	61.32	2	44	224	
UA089	Both	590.0	592.0	59.92	2	45	241	
U 160	Both	340.0	342.0	59.55	2	46	249	
U 160	Both	336.0	338.0	59.24	2	47	252	
S 098	Both	300.0	302.0	59.04	2	48	255	
U 160	Both	314.0	316.0	58.89	2	49	256	
S 098	Both	298.0	300.0	58.81	2	50	258	
U 160	Both	360.0	362.0	56.72	2	51	283	
U 160	Both	342.0	344.0	55.44	3	52	298	
U 160	Both	358.0	360.0	55.37	3	53	300	
U 160	Eastbound	356.0	358.0	54.88	3	54	304	
U 089	Both	493.1	494.1	54.57	3	55	307	
U 160	Both	352.0	354.0	54.37	3	56	311	
U 160	Both	350.0	352.0	54.16	3	57	312	
U 089	Both	519.9	521.2	53.89	3	58	314	
S 098	Both	354.0	356.0	53.24	3	59	318	
U 160	Both	344.0	346.0	51.70	3	60	324	
U 160	Both	354.0	356.0	51.51	3	61	328	
U 160	Both	346.0	348.0	51.12	3	62	329	
S 098	Both	352.0	354.0	50.75	3	63	331	

* Planning level cost estimates were developed for Tier 1 candidate locations only. Cost Estimates developed based on typical per-mile/foot construction costs for widening and are expressed in 2015 dollars and have not been field verified. Costs associated with acquiring right-of-way, widening culverts, and environmental mitigation are not included in estimates. Due to topographical or other physical constraints adjustment factors may need to be applied to the cost estimates to account for increased construction costs. During project implementation, the costs for each project may vary; therefore, during the design phase a detailed analysis should be performed to determine actual costs. Unless otherwise noted, the recommended projects are not yet funded.

:/**A**D)=

ADOT Statewide Shoulders Study Task Assignment MPD 059-14

Route	Direction	BMP	EMP	Total Points	Tier Level	District Rank	Statewide Rank	Cost Estimate*
S 098	Both	350.0	352.0	50.57	3	64	333	Lotiniato
S 098	Both	328.0	330.0	49.23	3	65	341	
U 089	Both	505.7	507.1	49.03	3	66	345	
S 098	Both	318.0	320.0	48.80	3	67	348	
S 098	Both	308.0	310.0	48.61	3	68	349	
S 098	Both	348.0	350.0	48.59	3	69	350	
S 098	Both	302.0	304.0	48.58	3	70	351	
S 098	Both	342.0	344.0	48.45	3	71	356	
S 098	Both	344.0	346.0	48.35	3	72	358	
S 098	Both	330.0	332.0	48.29	3	73	360	
U 089	Both	509.2	512.2	46.43	3	74	370	
S 064	Both	284.0	286.0	43.40	3	75	374	

Table 5.2: Two-Lane Highways - Ranking of Priority Candidate Locations in Flagstaff District (Continued)

* Planning level cost estimates were developed for Tier 1 candidate locations only. Cost Estimates developed based on typical per-mile/foot construction costs for widening and are expressed in 2015 dollars and have not been field verified. Costs associated with acquiring right-of-way, widening culverts, and environmental mitigation are not included in estimates. Due to topographical or other physical constraints adjustment factors may need to be applied to the cost estimates to account for increased construction costs. During project implementation, the costs for each project may vary; therefore, during the design phase a detailed analysis should be performed to determine actual costs. Unless otherwise noted, the recommended projects are not yet funded.